Top 10 similar words or synonyms for uses

neutron    0.964837

texts    0.961351

sequences    0.960049

material    0.957243

radiation    0.956872

evidence    0.956375

commentary    0.954143

numerous    0.953827

using    0.952497

questions    0.952212

Top 30 analogous words or synonyms for uses

Article Example
Стереометриско моделирање Uses of medical solid modeling;
Неутрино Since then, various detection methods have been used. Super Kamiokande is a large volume of water surrounded by photomultiplier tubes that watch for the Cherenkov radiation emitted when an incoming neutrino creates an electron or muon in the water. The Sudbury Neutrino Observatory is similar, but uses heavy water as the detecting medium, which uses the same effects, but also allows the additional reaction any-flavor neutrino photo-dissociation of deuterium, resulting in a free neutron which is then detected from gamma radiation after chlorine-capture. Other detectors have consisted of large volumes of chlorine or gallium which are periodically checked for excesses of argon or germanium, respectively, which are created by electron-neutrinos interacting with the original substance. MINOS uses a solid plastic scintillator coupled to photomultiplier tubes, while Borexino uses a liquid pseudocumene scintillator also watched by photomultiplier tubes and the proposed NOνA detector will use liquid scintillator watched by avalanche photodiodes. The IceCube Neutrino Observatory uses of the Antarctic ice sheet near the south pole with photomultiplier tubes distributed throughout the volume.
Ураниум During the later stages of World War II, the entire Cold War, and to a lesser extent afterwards, uranium-235 has been used as the fissile explosive material to produce nuclear weapons. Initially, two major types of fission bombs were built: a relatively simple device that uses uranium-235 and a more complicated mechanism that uses plutonium-239 derived from uranium-238. Later, a much more complicated and far more powerful type of fission/fusion bomb (thermonuclear weapon) was built, that uses a plutonium-based device to cause a mixture of tritium and deuterium to undergo nuclear fusion. Such bombs are jacketed in a non-fissile (unenriched) uranium case, and they derive more than half their power from the fission of this material by fast neutrons from the nuclear fusion process.
Хидраулика Early uses of water power date back to Mesopotamia and ancient Egypt, where irrigation has been used since the 6th millennium BC and water clocks had been used since the early 2nd millennium BC. Other early examples of water power include the Qanat system in ancient Persia and the Turpan water system in ancient China.
Стереометриско моделирање Parametric modeling uses parameters to define a model (dimensions, for example). The parameter may be modified later, and the model will update to reflect the modification. Typically, there is a relationship between parts, assemblies, and drawings. A part consists of multiple features, and an assembly consists of multiple parts. Drawings can be made from either parts or assemblies.
Неутрино Very much like neutrons do in nuclear reactors, neutrinos can induce fission reactions within heavy nuclei. So far, this reaction has not been measured in a laboratory, but is predicted to happen within stars and supernovae. The process affects the abundance of isotopes seen in the universe. Neutrino fission of deuterium nuclei has been observed in the Sudbury Neutrino Observatory, which uses a heavy water detector.
Ураниум The discovery of the radioactivity of uranium ushered in additional scientific and practical uses of the element. The long half-life of the isotope uranium-238 (4.51 years) makes it well-suited for use in estimating the age of the earliest igneous rocks and for other types of radiometric dating, including uranium-thorium dating, uranium-lead dating and uranium-uranium dating. Uranium metal is used for X-ray targets in the making of high-energy X-rays.
Хидраулика Хидраулика е тема во применетата наука и инженерство и се занимава со механичките својства на течностите или флуидите. At a very basic level, hydraulics is the liquid version of pneumatics. Fluid mechanics provides the theoretical foundation for hydraulics, which focuses on the engineering uses of fluid properties. In fluid power, hydraulics are used for the generation, control, and transmission of power by the use of pressurized liquids. Hydraulic topics range through some part of science and most of engineering modules, and cover concepts such as pipe flow, dam design, fluidics and fluid control circuitry, pumps, turbines, hydropower, computational fluid dynamics, flow measurement, river channel behaviour and erosion.
Ураниум Осиромашениот ураниум исто така се користи како заштитен материјал за некои садови кои се користат за чување и транспорт на радиоактивни материјали. While the metal itself is radioactive, its high density makes it more effective than lead in halting radiation from strong sources such as radium. Other uses of depleted uranium include counterweights for aircraft control surfaces, as ballast for missile re-entry vehicles and as a shielding material. Due to its high density, this material is found in inertial guidance systems and in gyroscopic compasses. Depleted uranium is preferred over similarly dense metals due to its ability to be easily machined and cast as well as its relatively low cost. The main risk of exposure to depleted uranium is chemical poisoning by uranium oxide rather than radioactivity (uranium being only a weak alpha emitter).
Неутрино Because neutrinos interact so little with matter, it is thought that a supernova's neutrino emissions carry information about the innermost regions of the explosion. Much of the "visible" light comes from the decay of radioactive elements produced by the supernova shock wave, and even light from the explosion itself is scattered by dense and turbulent gases, and thus delayed. The neutrino burst is expected to reach Earth before any electromagnetic waves, including visible light, gamma rays or radio waves. The exact time delay depends on the velocity of the shock wave and on the thickness of the outer layer of the star. For a Type II supernova, astronomers expect the neutrino flood to be released seconds after the stellar core collapse, while the first electromagnetic signal may emerge hours later, after the explosion shock wave has had time to reach the surface of the star. The SNEWS project uses a network of neutrino detectors to monitor the sky for candidate supernova events; the neutrino signal will provide a useful advance warning of a star exploding in the Milky Way.