Top 10 similar words or synonyms for behavior

firm    0.990774

previous    0.990326

making    0.989090

conversation    0.988374

established    0.987997

additional    0.987600

higgs    0.986937

call    0.986870

darwin    0.986870

theropods    0.986388

Top 30 analogous words or synonyms for behavior

Article Example
ମ୍ୟାଟ୍‌ଲାବ୍‌ Method call behavior is different between value and reference classes. For example, a call to a method
ଲୁଆ (ପ୍ରୋଗ୍ରାମିଂ ଭାଷା) Lua's treatment of functions as first-class values is shown in the following example, where the print function's behavior is modified:
କଣିକା ପଦାର୍ଥ ବିଜ୍ଞାନ Dynamics of particles is also governed by quantum mechanics; they exhibit wave–particle duality, displaying particle-like behavior under certain experimental conditions and wave-like behavior in others. In more technical terms, they are described by quantum state vectors in a Hilbert space, which is also treated in quantum field theory. Following the convention of particle physicists, the term "elementary particles" is applied to those particles that are, according to current understanding, presumed to be indivisible and not composed of other particles.
ରୁବୀ (ପ୍ରୋଗ୍ରାମିଂ ଭାଷା) Adding methods to previously defined classes is often called [[monkey patch|monkey-patching]]. However, if performed recklessly, this practice can lead to collisions of behavior and subsequent unexpected results, and problems with code scalability.
ଲ୍ୟାପୁନୋଭ୍ ସ୍ଥାୟୀତ୍ତ୍ଵ dynamical system ଗୁଡ଼ିକୁ ବୁଝାଉଥିବା ବିଭେଦକ ସମୀକରଣ (differential equation) ଗୁଡ଼ିକର ସମାଧାନ ପାଇଁ ବିଭିନ୍ନ ପ୍ରକାରର ସ୍ଥାୟୀତ୍ତ୍ଵ/ସ୍ଥିରତା (stability) କଥା ବିଚାରକୁ ନିଆଯାଇପାରେ । ତା'ଭିତରୁ equilibrium ବିନ୍ଦୁର ନିକଟସ୍ଥ ସମାଧାନ ଗୁଡ଼ିକର ସ୍ଥାୟୀତ୍ତ୍ଵକୁ ଗ୍ରହଣ କରିବା ଅଧିକ ଗୁରୁତ୍ତ୍ୱପୂର୍ଣ୍ଣ । ଲ୍ୟାପୁନୋଭ୍‌ଙ୍କ ତତ୍ତ୍ୱଦ୍ୱାରା ଏହା ଆଲୋଚନା ହୋଇପାରିବ । ସରଳ ଭାଷାରେ, ଏକ equilibrium ବିନ୍ଦୁ formula_1 ନିକଟରୁ ଉତ୍ପନ୍ନ ହେଉଥିବା ସମାଧାନଗୁଡ଼ିକ ଯଦି ସର୍ବଦା formula_1 ନିକଟବର୍ତ୍ତୀ ହୋଇ ରହନ୍ତି, ତା'ହେଲେ formula_1 ଲ୍ୟାପୁନୋଭ୍ ସ୍ଥାୟୀ (Lyapunov stable) ଅଟେ । ଭଲକରି କହିଲେ, ଯଦି formula_1 ଲ୍ୟାପୁନୋଭ୍ ସ୍ଥାୟୀ ଅଟେ ଏବଂ formula_1 ନିକଟରୁ ଉତ୍ପନ୍ନ ହୋଇଥିବା ସମସ୍ତ ସମାଧାନଗୁଡ଼ିକ formula_1 ସହ converge ହୁଅନ୍ତି, ତା'ହେଲେ formula_1 asymptotically ସ୍ଥାୟୀ ଅଟେ । exponential ସ୍ଥାୟୀତ୍ତ୍ଵର ଧାରଣା କ୍ଷୟର ଏକ ସର୍ବନିମ୍ନ ହାରକୁ ସୁଚାଏ, ମାନେ, କେତେ ଶୀଘ୍ର ସମାଧାନ ଗୁଡ଼ିକ converge ହେବ ଏହା ତା'ହାର ଏକ ଆକଳନ । Lyapunov ସ୍ଥିରତାର ଏହି ଧାରଣାକୁ infinite-dimensional manifoldsକୁ ସଂପ୍ରସାରଣ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ ଏହା structural stability ଭାବେ ଜଣା, which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability (ISS) applies Lyapunov notions to systems with inputs.