Top 10 similar words or synonyms for neutrino

neutrinos    0.956070

which    0.955220

particle    0.953240

its    0.951960

discovered    0.950420

using    0.949988

known    0.949842

such    0.948844

radiation    0.944673

neutron    0.943663

Top 30 analogous words or synonyms for neutrino

Your secret weapon. Online courses as low as $11.99

Article Example
Електронско неутрино Upon the prediction and discovery of a second neutrino, it became important to distinguish between different types of neutrinos. Pauli's neutrino is now identified as the "electron neutrino", while the second neutrino is identified as the "muon neutrino".
Неутрино There are three known types ("flavors") of neutrinos: electron neutrino , muon neutrino and tau neutrino , named after their partner leptons in the Standard Model (see table at right). The current best measurement of the number of neutrino types comes from observing the decay of the Z boson. This particle can decay into any light neutrino and its antineutrino, and the more types of light neutrinos available, the shorter the lifetime of the Z boson. Measurements of the Z lifetime have shown that the number of light neutrino types is 3. The correspondence between the six quarks in the Standard Model and the six leptons, among them the three neutrinos, suggests to physicists' intuition that there should be exactly three types of neutrino. However, actual proof that there are only three kinds of neutrinos remains an elusive goal of particle physics.
Неутрино Neutrinos are most often created or detected with a well defined flavor (electron, muon, tau). However, in a phenomenon known as neutrino flavor oscillation, neutrinos are able to oscillate among the three available flavors while they propagate through space. Specifically, this occurs because the neutrino flavor eigenstates are not the same as the neutrino mass eigenstates (simply called 1, 2, 3). This allows for a neutrino that was produced as an electron neutrino at a given location to have a calculable probability to be detected as either a muon or tau neutrino after it has traveled to another location. This quantum mechanical effect was first hinted by the discrepancy between the number of electron neutrinos detected from the Sun's core failing to match the expected numbers, dubbed as the "solar neutrino problem". In the Standard Model the existence of flavor oscillations implies nonzero differences between the neutrino masses, because the amount of mixing between neutrino flavors at a given time depends on the differences between their squared masses. There are other possibilities in which neutrino can oscillate even if they are massless. If Lorentz symmetry is not an exact symmetry, neutrinos can experience Lorentz-violating oscillations.
Неутрино On 31 May 2010, OPERA researchers observed the first tau neutrino candidate event in a muon neutrino beam, the first time this transformation in neutrinos had been observed, providing further evidence that they have mass.
Неутрино In 2009, lensing data of a galaxy cluster were analyzed to predict a neutrino mass of about . This surprisingly high value requires that the three neutrino masses be nearly equal, with neutrino oscillations on the order of meV. The masses lie below the Mainz-Troitsk upper bound of for the electron antineutrino. The latter will be tested in 2015 in the KATRIN experiment, that searches for a mass between and .
Неутрино The Standard Model of particle physics assumed that neutrinos are massless. However the experimentally established phenomenon of neutrino oscillation, which mixes neutrino flavour states with neutrino mass states (analogously to CKM mixing), requires neutrinos to have nonzero masses. Massive neutrinos were originally conceived by Bruno Pontecorvo in the 1950s. Enhancing the basic framework to accommodate their mass is straightforward by adding a right-handed Lagrangian. This can be done in two ways. If, like other fundamental Standard Model particles, mass is generated by the Dirac mechanism, then the framework would require an SU(2) singlet. This particle would have no other Standard Model interactions (apart from the Yukawa interactions with the neutral component of the Higgs doublet), so is called a sterile neutrino. Or, mass can be generated by the Majorana mechanism, which would require the neutrino and antineutrino to be the same particle.
Неутрино In the Cowan and Reines experiment, instead of an outgoing neutrino, you have an incoming antineutrino () from a nuclear reactor:
Неутрино It is possible that the neutrino and antineutrino are in fact the same particle, a hypothesis first proposed by the Italian physicist Ettore Majorana. The neutrino could transform into an antineutrino (and vice versa) by flipping the orientation of its spin state.
Неутрино If the neutrino is a Majorana particle, the mass may be calculated by finding the half life of neutrinoless double-beta decay of certain nuclei. As of 2015, the lowest upper limit on the Majorana mass of the neutrino has been set by KamLAND-Zen: 0.12–0.25 eV.
Неутрино In November 2012 American scientists used a particle accelerator to send a coherent neutrino message through 780 feet of rock. This marks the first use of neutrinos for communication, and future research may permit binary neutrino messages to be sent immense distances through even the densest materials, such as the Earth's core.