Top 10 similar words or synonyms for graphite

difference    0.980758

characteristic    0.979495

rare    0.975859

weight    0.974286

tempering    0.973861

dried    0.973138

compound    0.972730

activity    0.971960

weak    0.971117

convection    0.968107

Top 30 analogous words or synonyms for graphite

Article Example
ទាំងអស់ផ្កាយ: ការប្រកួតនិងសូដា Level 957 Race CarToyota FT-1 graphite
កាបូន According to the USGS, world production of natural graphite was 1.1 million tonnes in 2010, to which China contributed 800,000 t, India 130,000 t, Brazil 76,000 t, North Korea 30,000 t and Canada 25,000 t. No natural graphite was reported mined in the United States, but 118,000 t of synthetic graphite with an estimated value of $998 million was produced in 2009.
កាបូន There are three types of natural graphite—amorphous, flake or crystalline flake, and vein or lump. Amorphous graphite is the lowest quality and most abundant. Contrary to science, in industry "amorphous" refers to very small crystal size rather than complete lack of crystal structure. Amorphous is used for lower value graphite products and is the lowest priced graphite. Large amorphous graphite deposits are found in China, Europe, Mexico and the United States. Flake graphite is less common and of higher quality than amorphous; it occurs as separate plates that crystallized in metamorphic rock. Flake graphite can be four times the price of amorphous. Good quality flakes can be processed into expandable graphite for many uses, such as flame retardants. The foremost deposits are found in Austria, Brazil, Canada, China, Germany and Madagascar. Vein or lump graphite is the rarest, most valuable, and highest quality type of natural graphite. It occurs in veins along intrusive contacts in solid lumps, and it is only commercially mined in Sri Lanka.
កាបូន Commercially viable natural deposits of graphite occur in many parts of the world, but the most important sources economically are in China, India, Brazil and North Korea. Graphite deposits are of metamorphic origin, found in association with quartz, mica and feldspars in schists, gneisses and metamorphosed sandstones and limestone as lenses or veins, sometimes of a metre or more in thickness. Deposits of graphite in Borrowdale, Cumberland, England were at first of sufficient size and purity that, until the 19th century, pencils were made simply by sawing blocks of natural graphite into strips before encasing the strips in wood. Today, smaller deposits of graphite are obtained by crushing the parent rock and floating the lighter graphite out on water.
កាបូន The atoms of carbon can bond together in different ways, termed allotropes of carbon. The best known are graphite, diamond, and amorphous carbon. The physical properties of carbon vary widely with the allotropic form. For example, graphite is opaque and black while diamond is highly transparent. Graphite is soft enough to form a streak on paper (hence its name, from the Greek verb "γράφειν" which means "to write"), while diamond is the hardest naturally occurring material known. Graphite is a good electrical conductor while diamond has a low electrical conductivity. Under normal conditions, diamond, carbon nanotubes, and graphene have the highest thermal conductivities of all known materials. All carbon allotropes are solids under normal conditions, with graphite being the most thermodynamically stable form. They are chemically resistant and require high temperature to react even with oxygen.
កាបូន In 1779, Carl Wilhelm Scheele showed that graphite, which had been thought of as a form of lead, was instead identical with charcoal but with a small admixture of iron, and that it gave "aerial acid" (his name for carbon dioxide) when oxidized with nitric acid. In 1786, the French scientists Claude Louis Berthollet, Gaspard Monge and C. A. Vandermonde confirmed that graphite was mostly carbon by oxidizing it in oxygen in much the same way Lavoisier had done with diamond. Some iron again was left, which the French scientists thought was necessary to the graphite structure. In their publication they proposed the name "carbone" (Latin "carbonum") for the element in graphite which was given off as a gas upon burning graphite. Antoine Lavoisier then listed carbon as an element in his 1789 textbook.
កាបូន The allotropes of carbon include graphite, one of the softest known substances, and diamond, the hardest naturally occurring substance. It bonds readily with other small atoms including other carbon atoms, and is capable of forming multiple stable covalent bonds with suitable, multivalent atoms. Carbon is known to form almost ten million different compounds, a large majority of all chemical compounds. Carbon also has the highest sublimation point of all elements. At atmospheric pressure it has no melting point as its triple point is at 10.8 ± 0.2 MPa and 4,600 ± 300 K (~4,330 °C or 7,820 °F), so it sublimes at about 3,900 K. Graphite is much more reactive than diamond at standard conditions, despite being more thermodynamically stable, as its delocalised pi system is much more vulnerable to attack. For example, graphite can be oxidised by hot concentrated nitric acid at standard conditions to mellitic acid, C(COH), which preserves the hexagonal units of graphite while breaking up the larger structure.
ប៊ូតាន Bhutan has deposits of numerous minerals. Commercial production includes coal, dolomite, gypsum, and limestone. The country has proven reserves of beryl, copper, graphite, lead, mica, pyrite, tin, tungsten, and zinc.
កាបូន At very high pressures, carbon forms the more compact allotrope, diamond, having nearly twice the density of graphite. Here, each atom is bonded tetrahedrally to four others, forming a 3-dimensional network of puckered six-membered rings of atoms. Diamond has the same cubic structure as silicon and germanium, and because of the strength of the carbon-carbon bonds, it is the hardest naturally occurring substance measured by resistance to scratching. Contrary to the popular belief that ""diamonds are forever"", they are thermodynamically unstable under normal conditions and transform into graphite. Due to a high activation energy barrier, the transition into graphite is so slow at normal temperature that it is unnoticeable. Under some conditions, carbon crystallizes as lonsdaleite, a hexagonal crystal lattice with all atoms covalently bonded and properties similar to those of diamond.
បរ Binary metal-boron compounds, the metal borides, contain boron in negative oxidation states. Illustrative is magnesium diboride (MgB). Each boron atom has a formal −1 charge and magnesium is assigned a formal charge of +2. In this material, the boron centers are trigonal planar with an extra double bond for each boron, forming sheets akin to the carbon in graphite. However, unlike hexagonal boron nitride, which lacks electrons in the plane of the covalent atoms, the delocalized electrons in magnesium diboride allow it to conduct electricity similar to isoelectronic graphite. In 2001, this material was found to be a high-temperature superconductor.