Top 10 similar words or synonyms for ელექტრონისა

განავალში    0.900990

დაინფიცირება    0.896726

მოდულირებული    0.883509

ფოტოქიმიური    0.881059

ნიტროგლიცერინის    0.879489

დაჭიმულობა    0.879483

მონოკრისტალური    0.873983

ელექტროლიზი    0.873541

ჰიდროლიზი    0.872120

პროტონული    0.871680

Top 30 analogous words or synonyms for ელექტრონისა

Article Example
მიკროსკოპი თეორიულ თუ პრაქტიკული ფიზიკის წარმატებებს უნდა ვუმადლოდეთ ელექტრონისა და მისი თვისებების აღმოჩენას. ეს დაკავშირებულია ელექტრონული ოპტიკის შექმნის საფუძვლებთან. ჰიპოთეზა ელექტრონის ტალღოვანი ბუნების შესახებ ჯერ კიდევ 1942 წელს წარმოიშვა ლუი დე ბროლის მიერ, ხოლო ექსპერიმენტით დამტკიცებული იქნა 1927 წელს კ.დევისონის(აშშ), ლ.ჯერმერის(აშშ), და ჯ.ტომსონის(ინგლისი) მიერ.
ელექტრონული მიკროსკოპი თეორიული თუ პრაქტიკული ფიზიკის წარმატებებს უნდა ვუმადლოდეთ ელექტრონისა და მისი თვისებების აღმოჩენას. ეს დაკავშირებულია ელექტრონული ოპრიკის შექმნის საფუძვლებთან. ჰიპოთეზა ელექტრონის ტალღოვანი ბუნების შესახებ ჯერ კიდევ 1942 წელს წარმოიშვა ლუი დე ბროლის მიერ, ხოლო ექსპერიმენტით დამტკიცებული იქნა 1927 წელს კ.დევისონის(აშშ), ლ.ჯერმერის(აშშ), და ჯ.ტომსონის(ინგლისი) მიერ.
ატომი რკინის, კობალტისა და ნიკელის მაგავსი ფერომაგნიტური ელემენტების ელექტრონთა კენტი რიცხვი იწვევს გაუწყვილებელი ელექტრონისა და სუფთა საერთო მაგნიტური მომენტის არსეობას. მეზობელი ატომების ორბიტალები გადაფარავენ ერთმანეთს და მიიღწევა ენერგიის დაბალი დონე, როდესაც გაუწყვილებელი ელექტრონების სპინები ერთმანეთთან არიან განლაგებულნი, გაცვლითი ურთიერთქმედების სახელით ცნობილი სპონტანური პროცესისას. როდესაც ფერომაგნიტური ატომების მაგნიტური მომენტები ჩამწკრივებულია, მატერიას შეუძლია წარმოქმნას გაზომვადი მაკროსკოპული ველი. პარამაგნიტურ მატერიებს გააჩნიათ ატომები მაგნიტური მომენტებით, რომლებიც ქმნიან მწკრივს შემთხვევითი მიმართულებით, რა დროსაც მაგნიტური ველი არ წარმოიქმნება, მაგრამ ცალკეული ატომების მაგნიტური მომენტები მწკრივდებიან ველის არსებობით.
მასის შენახვის კანონი მასის შენახვის კანონისგან განსხვავებით "ნივთიერების" შენახვის კანონი შეიძლება განხილული იქნას როგორც მიახლოებითი ფიზიკური კანონი, რომელიც სამართლიანია მხოლოდ კლასიკური ფიზიკის ფარგლებში, ანუ ის აღარ არის სამართლიანი ფარდობითობის სპეციალურ თეორიასა და კვანტური მექანიკის ფარგლებში. მეორე პრობლემა, რომელიც უკავშირდება "ნივთიერების" შენახვია კანონს, იმაში მდგომარეობს, რომ თავად ცნება "ნივთიერება" არ არის ცალსახად განსაზღვრული. მაგალითად, ელექტრონისა და პოზიტრონის ანიჰილაციის შედეგად შეიძლება წარმოიშვას ფოტონი, რომელიც ხშირად არ განიხილება "ნივთიერებად". ასეთ შემთხვევაში ნივთიერების შენახვის კანონი არ არის სამართლიანი იზოლირებული სისტემისთვის.
პოლ დირაკი დირაკის განტოლებიდან ელექტრონის ისეთი მდგომარეობების არსებობა გამომდინარეობდა, რომლებიც უარყოფითი ენერგიით ხასიათდებიან (კვადრატულ ფესვს, აღნიშნულისამებრ, ორი მნიშვნელობა აქვს), ეს კი იმდროინდელი სამეცნიერო პარადიგმის საზღვრებს ცდებოდა და ინტერპრეტაციას არ ექვემდებარებოდა. მეცნიერების უმრავლესობა უარყოფით ენერგიას ფიზიკურ შინაარსს მოკლებულ "მათემატიკურ აბერაციად" აღიქვავდა. უარყოფითი ენერგიის მქონე მდგომარეობების არსებობის შემთხვევაში სამყაროს ყველა ელექტრონისთვის ენერგეტიკულად ხელსაყრელი სწორედ ამ მდგომარეობებში გადასვლა იქნებოდა. დირაკმა ივარაუდა, რომ უარყოფითი ენერგიის მქონე ყველა მდგომარეობა დაკავებულია, ელექტრონების გადასვლას კი ამ მდგომარეობებში პაულის პრინციპი კრძალავს, რომლის თანახმად, ყოველ დინამიურ მდგომარეობაში არსებობს არაუმეტეს ერთი ელექტრონისა. ვაკუუმი ელექტრონების უსასრულო რიცხვს შეიცავს, მათი დამზერა შეუძლებელია ენერგიის უარყოფითობის გამო. თუ რომელიმე მათგანი შეიძენს დადებითი ენერგიის მდგომარეობაში გადასასვლელად საკმარის ენერგიას, მაშინ ადგილი აქვს წყვილის დაბადებას: ჩნდება დადებითი ენერგიის ელექტრონი და "ხვრელი" – ვაკანსია უარყოფითი ენერგიის მქონე დონეზე. ხვრელი დადებითად დამუხტული (იხ. ელექტრული მუხტი) ელექტრონივით იქცევა. ასე დირაკმა ელექტრონის ანტინაწილაკის – პოზიტრონის არსებობა იწინასწარმეტყველა. 1932 წელს კარლ ანდერსონმა პოზიტრონი კოსმოსური სხივების შემადგენლობაში აღმოაჩინა. დირაკმა უმალვე სხვა ანტინაწილაკების არსებობის ჰიპოთეზა გამოთქვა. 1955 წელს ანტიპროტონი აღმოაჩინეს. ანტიმატერიის არსებობა ეჭვს აღარ იწვევდა.