Top 10 similar words or synonyms for octamer

heptamer    0.797537

octamers    0.780202

octomer    0.775583

hexamer    0.746558

octameric    0.734318

dodecamer    0.727961

nonamer    0.726240

decamer    0.712440

protomer    0.712075

heptamers    0.703351

Top 30 analogous words or synonyms for octamer

Article Example
Histone octamer As mentioned above the histone tails have been shown to directly interact with the DNA of the nucleosome. Each histone in the octamer has an N-terminal tail that protrudes from the histone core. The tails play roles both in inter and intra nucleosomal interactions that ultimately influence gene access. Histones are positively charged molecules which allow a tighter bonding to the negatively charged DNA molecule. Reducing the positive charge of histone proteins reduces the strength of binding between the histone and DNA, making it more open to gene transcription (expression). Moreover, these flexible units direct DNA wrapping in a left-handed manner around the histone octamer during nucleosome formation. Once the DNA is bound the tails continue to interact with the DNA. The parts of the tail closest to the DNA hydrogen bond and strengthen the DNA’s association with the octamer; the parts of the tail furthest away from the DNA, however, work in a very different manner. Cellular enzymes modify the amino acids in the distal sections of the tail to influence the accessibility of the DNA. The tails have also been implicated in the stabilization of 30-nm fibers. Research has shown removing certain tails prevents the nucleosomes from forming properly and a general failure to produce chromatin fiber. In all, these associations protect the nucleosomal DNA from the external environment but also lower their accessibility to cellular replication and transcriptional machinery.
Histone octamer Quasi symmetry allows the heterodimer to be superimposed on itself by a 180 degree rotation around this symmetry axis. As a result of the rotation, two ends of histones involved in DNA binding of the crescent shape H3-H4 are equivalent, yet they organize different stretches of DNA. The H2A-H2B dimer also folds similarly. The H3-H4 tetramer is wrapped with DNA around it as a first step of nucleosome formation. Then two H2A-H2B dimers are connected to the DNA- H3-H4 complex to form a nucleosome.
Histone octamer Numerous reports show a link between age-related diseases, birth defects, and several types of cancer with disruption of certain histone post translational modifications. Studies have identified that N- and C-terminal tails are main targets for acetylation, methylation, ubiquitination and phosphorylation. New evidence is pointing to several modifications within the histone core. Research is turning towards deciphering the role of these histone core modifications at the histone-DNA interface in the chromatin. p300 and cAMP response element-binding protein (CBP) possess histone acetyltransferase activity. p300 and CBP are the most promiscuous histone acetyltransferase enzymes acetylating all four core histones on multiple residues. Lysine 18 and Lysine 27 on H3 were the only histone acetylation sites reduced upon CBP and p300 depletion in mouse embryonic fibroblasts. Also, CBP and p300 knockout mice have an open neural tube defect and therefore die before birth. p300−/− embryos exhibit defective development of the heart. CBP+/− mice display growth retardation, craniofacial abnormalities, hematological malignancies, which are not observed in mice with p300+/−. Mutations of both p300 have been reported in human tumors such as colorectal, gastric, breast, ovarian, lung, and pancreatic carcinomas. Also, activation or localization of two histone acetyltransferases can be oncogenic.
Histone octamer Histone post-translational modifications were first identified and listed as having a potential regulatory role on the synthesis of RNA in 1964. Since then, over several decades, chromatin theory has evolved. Chromatin subunit models as well as the notion of the nucleosome were established in 1973 and 1974, respectively. Richmond and his research group has been able to elucidate the crystal structure of the histone octamer with DNA wrapped up around it at a resolution of 7 Å in 1984. The structure of the octameric core complex was revisited seven years later and a resolution of 3.1 Å was elucidated for its crystal at a high salt concentration. Though sequence similarity is low between the core histones, each of the four have a repeated element consisting of a helix-loop-helix called the histone fold motif. Furthermore, the details of protein-protein and protein-DNA interactions were fine-tuned by X-ray crystallography studies at 2.8 and 1.9 Å, respectively, in the 2000s.
Histone octamer The nucleosome core particle is the most basic form of DNA compaction in eukaryotes. Nucleosomes consist of a histone octamer surrounded by 147 base pairs of DNA wrapped in a superhelical manner. In addition to compacting the DNA, the histone octamer plays a key role in the transcription of the DNA surrounding it. The histone octamer interacts with the DNA through both its core histone folds and N-terminal tails. The histone fold interacts chemically and physically with the DNA’s minor groove. Studies have found that the histones interact more favorably with A:T enriched regions than G:C enriched regions in the minor grooves. The N-terminal tails do not interact with a specific region of DNA but rather stabilize and guide the DNA wrapped around the octamer. The interactions between the histone octamer and DNA, however, are not permanent. The two can be separated quite easily and often are during replication and transcription. Specific remodeling proteins are constantly altering the chromatin structure by breaking the bonds between the DNA and nucleosome.