Top 10 similar words or synonyms for porphyry_copper

polymetallic    0.764321

chromite    0.749513

porphyry_copper_deposit    0.744550

fluorspar    0.706622

cassiterite    0.701918

molybdenite    0.701081

barite    0.695465

homestake    0.694948

petalite    0.693610

copper_molybdenum    0.691269

Top 30 analogous words or synonyms for porphyry_copper

Article Example
Porphyry copper deposit The first mining of low-grade copper porphyry deposits from large open pits coincided roughly with the introduction of steam shovels, the construction of railroads, and a surge in market demand near the start of the 20th century. Some mines exploit porphyry deposits that contain sufficient gold or molybdenum, but little or no copper.
Porphyry copper deposit There also appears to be discrete time periods in which porphyry deposit formation appears to be concentrated or preferred. For copper-molybdenum porphyry deposits, formation is broadly concentrated in three time periods: Palaeocene-Eocene, Eocene-Oligocene, and middle Miocene-Pliocene. For both porphyry and epithermal gold deposits, they are generally from the time period ranging from the middle Miocene to the Recent period., however notable exceptions are known. Most large-scale porphyry deposits have an age of less than 20 million years., however there are notable exceptions, such as the 438 million year old Cadia-Ridgeway deposit in New South Wales. This relatively young age reflects the preservation potential of this type of deposit; as they are typically located in zones of highly active tectonic and geological processes, such as: deformation, uplift, and erosion. It may be however, that the skewed distribution towards most deposits being less than 20 million years is at least partially an artifact of exploration methodology and model assumptions, as large examples are known in areas which were previously left only partially or under-explored partly due to their perceived older host rock ages, but which were then later found to contain large, world class examples of much older porphyry copper deposits.
Porphyry copper deposit Some porphyry copper deposits in oceanic crust environments, such as those in the Philippines, Indonesia, and Papua New Guinea, are sufficiently rich in gold that they are called copper-gold porphyry deposits.
Porphyry copper deposit Porphyry copper deposits are copper orebodies that are formed from hydrothermal fluids that originate from a voluminous magma chamber several kilometers below the deposit itself. Predating or associated with those fluids are vertical dikes of porphyritic intrusive rocks from which this deposit type derives its name. In later stages, circulating meteoric fluids may interact with the magmatic fluids. Successive envelopes of hydrothermal alteration typically enclose a core of disseminated ore minerals in often stockwork-forming hairline fractures and veins. Because of their large volume, porphyry orebodies can be economic from copper concentrations as low as 0.15% copper and can have economic amounts of by-products such as molybdenum, silver and gold. In some mines, those metals are the main product.
Porphyry copper deposit After dehydration, solute-rich fluids are released from the slab and metasomatise the overlying mantle wedge of MORB-like asthenosphere, enriching it with volatiles and large ion lithophile elements (LILE). The current belief is that the generation of andesitic magmas is multistage, and involves crustal melting and assimilation of primary basaltic magmas, magma storage at the base of the crust (underplating by dense, mafic magma as it ascends), and magma homogenization. The underplated magma will add a lot of heat to the base of the crust, thereby inducing crustal melting and assimilation of lower-crustal rocks, creating an area with intense interaction of the mantle magma and crustal magma. This progressively evolving magma will become enriched in volatiles, sulfur, and incompatible elements – an ideal combination for the generation of a magma capable of generating an ore deposit. From this point forward in the evolution of a porphyry deposit, ideal tectonic and structural conditions are necessary to allow the transport of the magma and ensure its emplacement in upper-crustal levels.